Regulation of ferroptosis

Adam Wahida, MD, PhD

Helmholtz Zentrum München, Germany

München, Germany 57 institutes and departments

1444

Institute of Metabolism and Cell Death Director: Dr. Marcus Conrad

- Redox biology
- Cell death, Ferroptosis

Cell death

Accidental Cell Death Regulated Cell Death – Apoptosis Necroptosis Ferroptosis etc. ...

Ferroptosis

An iron-dependent, non-apoptotic regulated cell death characterized by extensive lipid peroxidation. *Dixon et al, Cell.* 2012

Lipid radicals is considered to lead to cellular membrane rupture

TAM-inducible Gpx4 KO MEF

Nanolive imaging

Mishima, *unpublished data*

Apoptosis

(Staurosporine)

Mishima, unpublished data

Ferroptosis and diseases

Mishima E and Conrad M. Annu Rev Nutr. 2022

Ferroptosis Regulation by metabolic pathway/signaling

Mishima E and Conrad M. Annu Rev Nutr. 2022

Today's talk

1. History of ferroptosis and its regulation

2. Vitamin K and ferroptosis

Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death

Scott J. Dixon,¹ Kathryn M. Lemberg,¹ Michael R. Lamprecht,³ Rachid Skouta,¹ Eleina M. Zaitsev,¹ Caroline E. Gleason,¹ Darpan N. Patel,¹ Andras J. Bauer,¹ Alexandra M. Cantley,¹ Wan Seok Yang,¹ Barclay Morrison III,³ and Brent R. Stockwell^{1,2,4,*} ¹Department of Biological Sciences ²Department of Chemistry ³Department of Biomedical Engineering ⁴Howard Hughes Medical Institute Columbia University, 550 West 120th Street, Northwest Corner Building, MC 4846, New York, NY 10027, USA *Correspondence: bstockwell@columbia.edu DOI 10.1016/j.cell.2012.03.042 Cystine: an essential amino acid

1950s

Dr. Harry Eagle

- Cystine is essential for cultured cell growth
- Cystine deprivation induces cell death
- Eagle's minimal essential medium (MEM)

Eagle, Science 1955 122:501 Eagle, JBC 1961 236:1425

Cystine deprivation-induced cell death

1970s

- Cystine deprivation induces
 GSH starvation and accumulation of ROS,
 causing cell death
- This cell death can be rescued by vitamin E

Dr. Shiro Bannai (Tsukuba Univ.)

(Photo with Marcus Conrad)

Identification of cystine transporter, xCT

1990s

Dr. Hideyo Sato (Niigata Univ.)

Sato, JBC 1999;274:11455

1980s

Dr. Fulvio Ursini (Univ. of Padova) - GPX4 (glutathione peroxidase 4) was identified as a lipid peroxidation-detoxifying protein.

Ursini F, BBA. 1985;839:62

Lipid peroxidation-induced cell death

2000s

Dr. Marcus Conrad (Photo when he was young) - Loss of GPX4 induces non-apoptotic cell death,

characterized by lipid peroxidation

Seiler, Cell Metab 2008;8:237

2012

Erastin (xCT inhibitor) and RSL3 (GPX4 inhibitor) induce iron-dependent non-apoptotic cell death

"Ferroptosis"

Dr. Brent Stockwell

Dixon, Cell 2012 Yang, Cell 2014 Number of published papers

Ferroptosis contains "oxidative stress"-induced cell death

are all ferroptosis

Mishima*, Wahida* et al, Nature Metab 2023

Cystine-GSH-GPX4 axis: a guardian of ferroptosis

FSP1: GPX4 independent ferroptosis regulation

2019

Dr. Marcus Dr. James Conrad Olzmann

Doll, Nature 2019 Bersuker, Nature 2019

-FSP1 (Ferroptosis Suppressor Protein-1)

-Extramitochondrial CoQ10 reductase

-A reduced form of CoQ10 (CoQH2) scavenges lipid radicals, preventing ferroptosis

Induction / prevention of ferroptosis

Mishima*, Wahida* et al, Nature Metab 2023

Regulators dictating ferroptosis sensitivity

Vitamin K and ferroptosis

Aim

We first explored yet-unknown metabolites for protecting against ferroptosis.

Screening of anti-ferroptotic metabolites

Vit K prevents ferroptosis with a lower concentration than Vit E

Vitamin K prevents ferroptosis

HT1080 cells

RSL3 + MK4

Nanolive movie

Vitamin K

Function for blood coagulation and bone mineralization

Vitamin K1 Phylloquinone In plant and green vegetables

Vitamin K2 Menaquinone 4 In animal products (meet and eggs) (MK4) Converted from dietary vitamin Ks

MK7In Natto (produced by bacteria)MK8In Cheese

Vitamin K

Function for blood coagulation and bone mineralization

Vitamin K1 Phylloquinone In plant and green vegetables

Vitamin K2 Menaquinone 4 (MK4) In animal products (meet and eggs) Converted from vitamin K1

Strongest anti-ferroptotic effect

MK7In Natto (produced by bacteria)MK8In Cheese

MK4 is tissue-protective against ferroptotic liver damage

Hepatocyte specific Gpx4 inducible KO + MK4 (200 mg/kg/day ip) (*Alb*-cre Gpx4 *fl/fl* + low vit E diet)

PE(18:0_18:1<2O>)-i1 PE(18:1_18:2<2O>)-i2

C57BL/6 mice + MK4 (200 mg/kg/day ip) pretreatment

Mishima*, Wahida* et al, Nature Metab 2023

Why VK is cell protective?

Vitamin K has no radical trapping activity....

Structural similarity of CoQ10 and VK

F

FSP1 is also a vitamin K reductase!

Generation of reduced form of VK !

Mass spectra of MK4 ± recombinant FSP1 + NADH

Radical trapping potency: MK4-H₂ > phylloquinone-H₂ ≒ CoQ10-H₂

FSP1-mediated anti-ferroptotic effect of vitamin K

786-O cells: human kidney cancer cell line

*RSL3: GPX4 inhibitor (ferroptosis inducer)

Anti-ferroptotic function of VK via FSP1

F

FSP1-VK in coagulation

Vitamin K for blood coagulation

 \rightarrow

Effect of anticoagulant Warfarin

*VKOR: Vitamin K epoxide reductase

Drug-drug interaction

Large variations in the dosage among individuals

Lethal bleeding

Treatment: reversal by high-dose vitamin K

Antidotal effect of VK for warfarin poisoning

Antidotal effect of VK for warfarin poisoning

Unidentified warfarin-resistant VK reductase

Unidentified over 70 yrs

Is FSP1 the antidotal enzyme for warfarin poisoning?

H

FSP1 enzymatic assay

hFSP1 + NADH + resazurin + inhibitors

WF poisoning in FSP1 KO mice is not rescued by VK

Warfarin overdose (Wild type mouse)

+ MK4

Cerebral bleeding

Warfarin overdose ± MK4

Survival rate

Mishima... Wahida...et al, Nature 2022

Mishima*, Wahida* et al, Nature Metab 2023

Warfarin overdose (Wild type mouse)

+ MK4

Cerebral bleeding

Prothrombin time Survival rate P = 0.002>96-0 1.0 0.0185 80-0.8 Survival rate 0 (sec) 60-0.6 Ш 40-٩ 0.4 20-0.2 0 0 10 6 8 0 2 Fsp1 📯 🗡 XX * * * Time (day) Warfarin Warfarin $Fsp1^{+/-}$ + warfarin + MK4 (n = 6) + MK4 - $Fsp1 \rightarrow + warfarin + MK4 (n = 6)$ $Fsp1^{+/-} + warfarin (n = 6)$ $Fsp1^{-/-} + warfarin (n = 6)$

Mishima... Wahida...et al, Nature 2022

Mishima*, Wahida* et al, Nature Metab 2023

FSP1 is the antidotal effect of VK for warfarin poisoning

Summary: FSP1-mediated 2 functions of VK

Human history and warfarin

Conrad M. Nat Chem Biol. 2019;15:1137

0.05 – 0.5 nmol/g tissue << ~ 100 nmol/g tissue

Pharmacological dose of VK is anti-ferroptotic

Effect by endogenous VK would be minor in our bodies

Is anti-ferroptosis the evolutionally original function of VK?

Is anti-ferroptosis the evolutionally original function of VK?

Is anti-ferroptosis the evolutionally original function of VK?

Ferroptosis

Perspectives

Exploring the physiological significance of the anti-ferroptotic function of VK in mammals, plants and bacteria.

Helmholtz Munich

Toshitaka Nakamura Eikan Mishima Sebastian Doll Maceler Aldrovandi Bettina Proneth Marcus Conrad

Tohoku Univ, Sendai Junya Ito Nakagawa Kiyotaka Emiko Sato Takaaki Abe

University of Ottawa Zijun Wu Derek A. Pratt

Technische Universität Dresden

Wulf Tonnus Palina Nepachalovich Maria Fedorova Andreas Linkermann

University of Regensburg Elke Eggenhofer Edward K. Geissler

